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Genotoxic Effects of 2-Acetylamino-
fluorene on Rat and Human Hepatocytes
by Stephen C. Strom,* Randy L. Jirtle* and

George Michalopoulos*

Isolated rat and human hepatocytes in primary culture were shown to metabolize AAF to reactive
intermediates which damaged hepatocyte DNA. A significant increase in unscheduled DNA synthe-
sis was detectable by autoradiography in rat and human hepatocytes exposed to concentrations of
AAF as low as 1 uM. When rat hepatocytes were plated over confluent monolayers of human fibro-
blasts and exposed to *H-AAF, significant binding of AAF to the DNA of the fibroblasts as well as
the hepatocytes was measured. In other experiments with hepatocyte-fibroblast cocultures, nonradi-
oactive AAF, at concentrations greater than 40 uM, induced a significant increase in the HPRT-
mutation frequency in the human fibroblasts. These results demonstrate that hepatocytes can be
used to assess genotoxicity of carcinogenic compounds and are useful for interspecies comparisons

in chemical carcinogenesis.

Introduction

2-Acetylaminofluorene (AAF) is a potent rat liver
carcinogen and is an example of a compound that is
carcinogenic and mutagenic only after activation
by cellular metabolic pathways to a reactive electro-
phile (7). The propensity of the aromatic amides and
amines to induce tumors at sites distant from, but
not at, the site of administration led to speculation
that these compounds required metabolic conver-
sion to other forms which were the ultimate carcino-
gens (1). Observations that the N-hydroxy metabo-
lite of AAF was a more potent carcinogen than the
parent compound implicated N-hydroxy-AAF as an
intermediate or proximate carcinogenic form of
AAF (2). The further activation of N-hydroxy-AAF
to the ultimately carcinogenic form(s) is/are via cyto-
solic sulfotransferase (3), N-O-glucuronidation (4) or
acetylation (5), or via an N,O-acetyl transferase reac-
tion (6, 7).

There are marked species, sex and tissue differ-
ences in the activation and the susceptibility to
AAF carcinogenesis (1, 8, 9). Guinea pigs appear to
be resistant to AAF carcinogenesis due to a lack of
N-hydroxylation activity (§) but in other resistant
animals, such as the rhesus monkey, Cotton rat and
X/Gf mice (8-11), the reasons for the resistance are
less clear. Because of the wide variations in the acti-
vation and the sensitivities to AAF carcinogenesis
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observed in experimental animals, estimates of the
toxicity that would result from human exposures to
AAF or other aromatic amines are difficult based
on animal data. Therefore, human susceptibility to
aromatic amides or amines may be investigated
with human tissues.

We have developed a coculture system of rat he-
patocytes and human fibroblasts (12) which is useful
for investigations of carcinogen activation, DNA
binding of carcinogens, DNA repair, and the muta-
genesis induced in human fibroblasts by procarcino-
gens activated by intact rat hepatocytes (13, 14). We
have recently described the conditions for the isola-
tion and culture of human hepatocytes and have
demonstrated that human hepatocytes obtained by
collagenase perfusion are useful for in vitro studies
with chemical carcinogens (Z5). In this report we
present data which indicate that when radiolabeled-
AAF is added to rat hepatocytes in culture with hu-
man fibroblasts, AAF residues are found on the
DNA isolated from the fibroblasts as well as the
DNA of the hepatocytes. In other experiments,
when nonradioactive AAF was added to hepatocyte
fibroblast cocultures, sufficient amounts of “acti-
vated” AAF were transferred from the hepatocytes
to the fibroblasts to induce a significant increase in
the hypoxanthine-guanine-phosphoribosyltransfer-
ase (HPRT ~) mutation frequency in the human
fibroblasts. We also present further evidence of the
activation of AAF by human hepatocytes by the
demonstration of significant increases in un-
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scheduled DNA synthesis in human hepatocytes
following exposure in vitro to AAF.

Materials and Methods

Cell Culture

Human male diploid fibroblasts (GM 3468 Human
Genetic Cell Repository) were maintained at pas-
sages 7-12 in Eagles minimal essential medium
(MEM) supplemented with amino acids and hypo-
xanthine/10 ~ °M amethopterin/10 = °M thymidine
(HAT) as previously reported (13). Mutagenesis ex-
periments and the determination of the relative
plating efficiency was performed as described (13).

Hepatocytes were isolated by perfusion of the
livers of male Sprague-Dawley rats (Charles Rivers,
Wilmington DE) with collagenase (13). Approxi-
mately 3.5 x 10° hepatocytes were plated over the
fibroblast monolayers in MEM supplemented as
above and with 5% fetal bovine serum (FBS)
(Sterile Systems Inc. Logan, UT) to aid in the at-
tachment of the hepatocytes to the fibroblasts.
Cultures were left undisturbed for 4 hr and then
the medium was changed to serum-free MEM. AAF
(Aldrich Chem Co.) was dissolved in dimethyl
sulfoxide (DMSO) and was added to the cultures
after the media change (1% final concentration of
DMSO in the media in all experiments). After the
addition of AAF, the cocultures or cultures of fibro-
blasts alone were incubated at 37°C for 45 hr. After
the carcinogen exposure, hepatocyte-fibroblast
cocultures or cultures of fibroblasts alone were
trypsinized and the relative plating efficiency and
the induced HPRT™ mutation frequency was
determined as described (13). ‘

Determination of the Binding of

AAF to DNA

Binding of *H-AAF to hepatocyte and fibroblast
DNA was determined as described previously (14).

Approximately 7 days prior to being overlayed with

hepatocytes, fibroblast cultures were trypsinized
and incubated with 10 uM 5-bromo-2-deoxyuridine
(BRdU) as reported (14). BRAU was added to the
media to substitute for thymidine in the fibroblast
DNA. BRdU-substituted fibroblasts cultures were
grown to confluency in total darkness. When the fi-
broblast cultures were confluent, hepatocytes were
added under reduced gold light (Westinghouse
F72T12 high output gold) as indicated above. After
the media change, *H-AAF (Ring °H, 1 mCi/mg, do-
nated by Dr. F. A. Beland, National Center for Toxi-
cological Research) was added to the cultures in
BRAU and serum-free media, either directly or with
an appropriate amount of unlabeled AAF. Hepato-
cyte-fibroblast cocultures or cultures of fibroblasts

alone were incubated with the *H-AAF for 45 hr in
the dark. The cultures were harvested by scraping
and the hepatocyte DNA was separated from the
heavier fibroblast DNA as previously described (14).
An additional cesium chloride isolation step with
the TV-865 vertical rotor (Dupont-Sorvalll was
added to insure complete separation of the normal
density, hepatocyte DNA from the hybrid density,
BRdU-substituted fibroblast DNA. The specific ac-
tivities of the DNAs were determined as reported

(24).

Unscheduled DNA Synthesis (UDS) Ex-
periments

Isolated rat or human hepatocytes were plated on
collagen-coated (12) chamber slides (Lab-Tec) for 4
hr in MEM supplemented as described above and
with 5% FBS. After 4 hr the medium was changed
and 1, 10 or 100 uM AAF and 7.5 uCi/mL of *H-thy-
midine (ICN, 40-60 Ci/mmole) were added to the cul-
tures in serum-free media. Cultures were incubated
for 24 hr at 37°C in a fully humidified 5% CO, at-
mosphere. After 24 hr, the slide cultures were
washed in five sequential 4L beakers of saline
(0.9%), washed in 100% methanol for approximately
20 sec and fixed for 24 hr in phosphate-buffered
10% formalin (pH 7.2). Slides were dipped in Kodak
NTB-3 emulsion diluted 1:1 with distilled water and
were stored in the freezer in the dark for 7-10 days.
The slides were subsequently developed and
stained with hematoxylin and eosin. Grains over the
nuclei of the hepatocytes were counted at 400 x or
1000 x (oil immersion) with a Leitz microscope.

Results

AAF activated by freshly isolated rat hepato-
cytes induced a significant increase in the HPRT ~
mutation frequency in the human fibroblasts when
cocultures of the two cell types were exposed to
concentrations of AAF greater than 40 uM (Fig. 1B).
The increase in the mutation frequency was depen-
dent on the activation of AAF by the hepatocytes,
as no significant stimulation in the HPRT = muta-
tion frequency over the control value of 0.38 + 0.09
x 107 *(mean = S.E.) was observed when cultures
of human fibroblasts were exposed to AAF in the
absence of hepatocytes (0.37 +0.1 x 10~ ® for 40-
600 uM AAF). The relative plating efficiencies of the
fibroblasts after exposures to the indicated concen-
trations of AAF are given in Figure 1A. There was
a dose-dependent decrease in the plating efficiency
of the fibroblasts exposed to AAF in the presence
of hepatocytes (open circles). When cultures of
fibroblasts were exposed to AAF in the absence of
hepatocytes, there was not a significant decrease in
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Figure 1. Cytotoxicity and mutagenicity of AAF. Human
fibroblasts were exposed to the indicated concentrations of
AATF (o) in the presence or (®) the absence of hepatocytes.
(A) The plating efficiency of fibroblasts exposed to the
indicated concentrations of AAF. The ordinate is in log
scale and the results are expressed as a percentage of the
control plating efficiency. (B) The frequency of HPRT™
mutant human fibroblasts is expressed as numbers of
mutants per 10° clonogenic survivors. The control
background mutation frequency was 0.38 + 0.09 x 10-°in
four experiments. Data points are the means = the
standard error of the mean from four experiments. The in-
duced mutation frequency for fibroblasts exposed to
concentrations of AAF > 40 uM, in the presence of
hepatocytes was significantly different from control (p <
0.05) as determined by Student’s t-test. For fibroblasts
exposed to AAF in the absence of hepatocytes the induced
mutation frequency did not exceed 0.37 + 0.1 x 10°°.

the plating efficiency of the fibroblasts (closed
circles), which is consistent with our observations
that no mutations were induced in the fibroblasts
by AAF unless AAF was first activated by the
hepatocytes.

We investigated the binding of *H-AAF to hepa-
tocyte and fibroblast DNA when 10-300 M AAF
was added to the combined cultures of hepatocytes
and fibroblasts or cultures of fibroblasts alone. Sub-
stantial amounts of *H-AAF were recovered bound

to fibroblast DNA as well as to the hepatocyte
DNA (Table 1). Between 5 and 15% of the AAF
bound to the fibroblast DNA was due to fibroblast
activation as determined by the binding of AAF to
the DNA of cultures of fibroblasts alone. Binding of
AAF to the DNA of fibroblasts exposed to AAF in
the absence of hepatocytes was subtracted from the
values for the fibroblasts presented in Table 1. Al-
though there was a slight (but nonsignificant) in-
crease in the binding of AAF to the fibroblast DNA
as the concentration of AAF was increased in the
media, there does not appear to be a clear associa-
tion between the level of AAF binding to fibroblast
DNA and the induced mutation frequency in these
experiments. The levels of specific DNA adducts

Table 1. Binding of *H-AAF to hepatocyte and fibroblast DNA.?
Binding of AAF, pmole/ug DNA

[AAF]= [AAF]= [AAF]=

10 uM 100 uM 300 uM
Hepatocytes 12.8+ 4.0 18.0+ 2.0 34.5+ 8.0
Fibroblasts 138+ 25 141+ 20 165+ 45

*Rat hepatocytes were plated over confluent monolayers of
human fibroblasts whose DNA was previously substituted
with BRAU and the cocultures were exposed to 100 uM °H-
AAF for 45 hr under conditions identical to those of the
mutagenesis experiments. After the exposure, normal density
hepatocyte DNA was separated from the heavier BRdAU
substituted fibroblast DNA by equilibrium density cen-
trifugation in cesium chloride, and the specific activity of the
fibroblast and hepatocyte DNA was determined. The results
shown are the means + SE of two or three experiments.

may correlate better with the induced mutation
frequency than the overall level of binding of AAF
to DNA.

Human hepatocytes were isolated and cultured
as previously described (75). A light micrograph of
human hepatocytes in culture for 24 hr is presented
in Figure 2. The hepatocytes have attached to the
collagen substrate and and have spread out to form
a monolayer by 24 hr. The epithelial morphology of
the human hepatocytes in culture with their granu-
lar cytoplasm and prominent nuclei is very similar
in appearance to rat hepatocytes. Human hepato-
cytes were exposed in vitro to 1, 10 or 100 uM AAF
and unscheduled DNA synthesis was measured dur-
ing a 24-hr exposure to the carcinogen and *H-thymi-
dine. There was a dose response increase in the
amount of DNA repair measured by autoradiog-
raphy in the human and rat hepatocytes exposed to
AAF (Table 2). The amount of DNA repair replica-
tion measured in Case 4 was less than half that
measured in Case 3 after exposures to the same
concentrations of AAF. Case 4 showed less repair
than that measured in Sprague-Dawley rat hepato-
cytes exposed to AAF under conditions identical to
those used for the human cells, but the repair re-
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Table 2. UDS measured in rat and human hepatocytes.2

Human hepatocytes

[2-AAF], Rat hepatocytes
uM Case 3 Case 4 (Sprague-Dawley)
0 (control) 3.7+09 3.12+0.34 6.4+0.5
1 152+ 3.2 45 £05 176+ 1.8
10 26.5+25 9.5 +09 294+ 3.7
100 374+29 14.8 +1.0 30.0+ 3.1

*Freshly isolated rat or human hepatocytes were exposed
to the indicated concentrations of AAF plus *H-thymidine, 7.5
uCi/ml for 24 hr. UDS measured in all carcinogen exposed
cultures was significantly different from control, p<0.01.

sponse observed in Case 3 was very similar to the
repair response seen in the rat. Photomicrographs
of the UDS measured in human hepatocytes ex-
posed to 0 (DMSO control) or 100 uM AAF are
presented in Figure 3.

Discussion

Results presented here indicate that the potent
rat liver carcinogen, AAF, is activated by freshly
isolated rat hepatocytes in culture and that the ac-
tive metabolite(s) pass out of the hepatocytes to
bind to the DNA of human fibroblasts in coculture
with the hepatocytes. The amount of activated AAF
that reaches the fibroblasts is sufficient to induce a
significant increase in the HPRT- mutation fre-
quency in the human fibroblasts. We have also dem-
onstrated that the binding of AAF to fibroblast
DNA and the increase in the mutation frequency is
dependent on the presence of hepatocytes in culture
with the fibroblasts during the exposure to AAF.

FIGURE 2. Human hepatocytes in culture. Phase-contrast light micrograph of human hepatocytes in culture for 24 hr. The
hepatocytes have a fine granular cytoplasm and a prominent nuclei.

These results are the first demonstration of hepato-
cyte-mediated AAF mutagenesis in human fibro-
blasts. The hepatocyte-fibroblast coculture should
be of significant value in the determination of the
mutagenicities of the various DNA adducts that
result from the covalent interaction of AAF with
DNA (16-18).

Human hepatocytes exposed to AAF in vitro re-
sponded to the carcinogen exposure with significant
increases in UDS as measured by autoradiography.
These results are in agreement with our previous
observations (14, 19) and those of others (20, 21), of a
stimulation of UDS in rat hepatocytes by AAF. The
stimulation of UDS in Cases 3 and 4 is consistent
with our previous observations of a significant stim-
ulation of UDS in human hepatocytes by AAF (15).
The amount of UDS measured in hepatocytes from
Case 4 was much lower than that measured in the
hepatocytes from Case 3 at all concentrations of
AAF tested and lower than our previous observa-
tions of AAF-induced UDS in human hepatocytes
(15). The lower relative amounts of UDS measured
in hepatocytes from Case 4 relative to the other
cases may be due to poorer activation of AAF by
the hepatocytes from Case 4, or poorer repair of the
damaged DNA by the hepatocytes in Case 4 rela-
tive to the other cases. Severalfold variations in the
activation of aromatic amines by subcellular frac-
tions of human liver from different subjects has
been reported by Dybing et al. (22). Hepatocytes
from Cases 3 and 4 responded with UDS in a nearly
identical manner after exposures to diethyl- and di-
methylnitrosamine (unpublished observations). UDS
induced by benzola)pyrene in the hepatocytes from
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FIGURE 3. UDS measured in human hepatocytes. Hepatocytes were exposed to (4) 0 uM (1% DMSO), or (B) 100 uM AAF, for 24
hr in the presence of 7.5 uCi/mL of *H-thymidine. Photomicrographs were taken at 750 x .

Case 3 was approximately half of the value we have
normally observed for human hepatocytes (15). Both
AAF and benzola)pyrene are repaired by the long
patch repair pathway (23), and it is possible that he-
patocytes from this patient were slightly defective
in long patch repair compared to the other cases.
Hepatocytes obtained by the collagenase perfu-

sion of pieces of human liver may be useful for the
detection of chemicals carcinogenic to humans. Hu-
man hepatocytes may be used directly for the detec-
tion of potentially carcinogenic chemicals with the
UDS assay as presented here and (15) or may be
combined with human fibroblasts to establish an all
human tissue mutagenesis system. Aust et al. (24)
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have recently described the establishment of human
kidney carcinoma cell-mediated human fibroblast
mutagenesis system. The carcinoma cells were dem-
onstrated to be useful for the activation of aromatic
hydrocarbons to mutagenic metabolites for the hu-
man fibroblasts. Because of the extensive carcino-
gen activating capabilities of hepatocytes compared
to other tissues, a human hepatocyte-human fibro-
blast coculture system may be useful for the detec-
tion of a greater number of classes of mutagenic
chemicals than other cell-mediated systems.

This work was supported by National Cancer Institute
grants CA06743, CA25951 and CA26904 and by grant
CA30241 from the National Institutes of Health.
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